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2-axis: diffraction 

3-axis: dynamics 
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Consider the properties of a photon 

If we take X-rays, then  ≈ 1 Å; what is the associated photon energy? 

 

 

• If we take a typical vibration of ~1500 cm-1: 
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100 ´1500
= 6.667 ´10-6 m

 that diffracts <<  associated with atomic motions 



Now consider the properties of a neutron 

For neutrons of  ≈ 1 Å, what is the associated energy? 

 

 

Vibrations and lattice modes lie up to ~3500 cm-1 
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 that diffracts =  associated with atomic motions 



Neutron spectroscopy - why?….    
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So, how do we do spectroscopy with neutrons..? 

• Monochromators can be used to define ki 

 

 

• However, need to determine ko to obtain E 

 

 

1.  use a second monochromator (analyzer) to set ko or use a filter to set ko 

 

    scan ki at the monochromator (and ko at analyzer) 
 
 

2.  time-of-flight (TOF) analysis with fixed ki  (direct geometry) time-of-flight with 
fixed ko  (indirect geometry) 
 

     need a precise knowledge of the instrument flight paths 
 

 

 

 

 

 



Triple axis spectroscopy….. (Taipan & Sika) 
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 Ideally suited to probing small regions of (Q,) 

 

Very high flux, but low (Q,) coverage 

 

Usually requires large single crystal samples 



Time-of-flight spectroscopy….. (Pelican) 

… for a given packet of neutrons, that start at some moment: 

 
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Time-of-flight spectroscopy….. (Pelican) 

… for a given packet of monochromatic neutrons, that start at some moment and then scatter from a sample: 

Whilst all neutrons arrive at the sample at the same time 

- some will gain energy & others lose energy at the 

sample 



TOF basics…. 
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If distances are known: 
 

either Ei can be fixed & tTOF measured 
(direct geometry) 

 
OR 

 
Ef can be fixed & tTOF gives Ei 

(indirect geometry) 
 
 

In BOTH cases, we then have E 



TOF instruments Pelican Layout

Ideal instrument 
to start INS on: 

 
can run many sample types 
 
single sample position 
 
set Ei & measure…. 
 
full spectra immediately 
(do not sequentially scan) 
 
large coverage of Q- 
space – ideal for survey 
scans  
 



Correlation functions 

Most of the analysis of scattering data is actually in the form of so-called 
pair correlation functions 

Think of Bragg’s Law: 

 What we are measuring is the correlations between regions (planes) of 

scattering density 

   - this may be electron density for X-rays (photons) & electrons 
   - or nuclei (predominantly) for neutrons 

What about inelastic scattering? 

We measure the change in some parameter (polarizability, amplitude of 

oscillation, etc.) 

   - if the wave vectors are similar in length to the distance between points 

in the reciprocal lattice, then we can have structural and temporal 

information! 

   - alternatively, mis-match gives either structural or temporal information… 



Correlation functions 

The intensity of elastic, coherent neutron scattering is proportional to the 

spatial Fourier Transform of the Pair Correlation Function, G(r);  the probability 

of finding a particle at position r if there is simultaneously a particle at r = 0. 

The intensity of inelastic coherent neutron scattering is proportional to the 

space and time Fourier Transforms of the time-dependent pair correlation 

function function, G(r,t) = probability of finding a particle at position r at time t 

when there is a particle at r = 0 and t = 0. 

For inelastic incoherent scattering, the intensity is proportional to the space 

and time Fourier Transforms of the self-correlation function, Gs(r,t);  the 

probability of finding a particle at position r at time t when the same particle 

was at r = 0 at t = 0. 
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Applications suited to TOF…. 

A typical TOF experiment gives all correlation functions: 

 G(r) along the elastic line 

 G(r,t) + Gs(r,t) outside of the elastic region 

 

 

The given coverage of S(Q,) - kinematic limits - makes TOF ideal for dynamics that 

are not restricted to regions or points of reciprocal space 

 

 

There is no need for single crystal samples - although these can be accommodated  

 - polycrystalline, powder, amorphous, liquid,……  

 
Molecular spectroscopy & lattice dynamics  Guest:host interactions (confinement)   

 

Dynamics of inclusions      Magnetism (low dimensional & frustrated)   

 

Single molecule magnets      Amorphous materials & liquids (local dynamic/
               structure relation) 



Recent (unpublished) data….  PMB 

Localised modes dominated by methyl group 
dynamics. 

•  Absence of dispersion 
•  Increasing intensity as a f(Q) 
•  Agreement between TAS & TOF data (a good thing) 
  

Samples ca. 100 mg of powdered C6(CH3)5H 
Data collected < 10 K. 
  

M. Mudge, B.K. Ng, M. Bhadbhade, K.C. Rule, R.A. Mole & J.A. Stride; unpublished  
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Taipan, ANSTO 
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Numerical modelling 

measure the 

sum over all 

wave-vectors 

in S() 

J.A. Stride, Acta Cryst. B, 61 (2005) 61 200  



comparison of DFT to expt: 
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J.A. Stride, J.M. Adams & M.R. Johnson, Chem. Phys., 317 (2005) 143  
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d-HMB: isotopic substitution  
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Methyl tunnelling 
•  Very low energy transitions (much lower than the torsional motions) can result in tunnelling 

spectra 
– Very sensitive probe of the potential energy surface that the rotor sits in 

– CH3, NH3, NH4
+, etc., 

Stride et al., Chemistry, Eur. J., 2009, 15, 6569. 
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X-(C6H4-CH3)4 

M.C.C. Ng, D.J. Craig, J.B. Harper, L. van-Eijck & J.A. Stride, Chemistry, Eur. J., 15 (2009) 6569 
M.C.C. Ng, J.B. Harper, A.P.J. Stampfl, S. Rols, G.J. Kearley & J.A. Stride, Chem., Eur. J., 18 (2012) 13018  
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magnetic sponges: M3(HCO2)6  

M = Mn2+, Fe2+, Co2+, Ni2+, Zn2+  

bulk ferro-, ferrri- & non-magnetic examples 

 

porous structure 

 

magneto-structural correlations? 

Z. Wang, B. Zang, H. Fujiwara, H. Kobayashi & M. Kurmoo, Chem. Commun., (2004) 416 



adsorbed species….  

 

Currently >40 guests characterised 

 

 

Z. Wang, B. Zang, H. Fujiwara, H. Kobayashi & M. Kurmoo, Chem. Commun., (2004) 416 



[Mn3(HCO2)6] @ i = 3.6 Å; Ei = 6.3 meV  

Tc = 8.0 K 

 

T = 6 K 

T=1.5 K T = 4 K 

T = 15 K 

J.A. Stride, M. Kurmoo and Z. Wang, Physica B, 385-386 (2006) 465  
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[Mn3(HCO2)6] @ i = 4.1 Å; Ei = 4.9 meV  

Pronounced degree of dispersion 
 
Magnetic Excitations (Q-dependence) 
  

Samples ca. 500 mg of perdeuterated 
powders.  

Strong long-range magnetic excitations 
 

Chain-like coupling of spins 
  

(unusually well-defined dispersion 
curves from a powder).  
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adsorbed species…? 

Unloaded, T = 1.5 K Loaded with C6H6, T = 1.5 K 

Mn3(HCO2)6  i = 1.8 Å; Ei = 25.2 meV: 
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adsorbed species…? 

Mn3(HCO2)6  i = 1.8 Å; Ei = 25.2 meV: 

•  Assumes that the 
framework phonons 
are not very 
different upon 
loading 

•  all modes show 
Q2 phonon-like 
behaviour 

•  no indication of 
magnetic 
scattering in 
difference plot 
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phonon density of states of confined 

species: 

2 4 6 8 10 12 14 16 18

16.1 32.3 48.4 64.5 80.6 96.8 112.9 129.0 145.2
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Conclusions (take home messages) 

Inelastic neutron scattering can provide complementary – often unique - information to 

other scattering techniques 
 

The whole gamut of condensed matter dynamics is accessible to neutrons: 

•  from meV through to near eV 

•  largely motions of atoms & nuclei (coherent, incoherent, diffusive) 

•  sensitive to fluctuations in magnetic moments (magnons, spin waves) 

 

Isotopic variation can ‘silence’ certain modes 
•  incoherent scattering of 1H (when present) dominates spectra 

•  most molecular species have 1H – great sensitivity…. 

•  dynamics on confinement 

 

Absence of selection rules for vibrational modes  
•  particle-particle interactions – ease of numerical modelling 

  

World class facilities available at ANSTO – complementary techniques in Japan, 

Europe & USA. 



thank you 


